
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.11 Composition: Objects as Members of

Classes (cont.)

Date Class’s Default Copy Constructor

• As we mentioned in Section 9.9, the compiler provides each
class with a default copy constructor that copies each data
member of the constructor’s argument object into the
corresponding member of the object being initialized.

• Chapter 10 discusses how you can define customized copy
constructors.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.11 Composition: Objects as Members of

Classes (cont.)

Testing Classes Date and Employee
• Figure 9.21 creates two Date objects (lines 10–11) and passes them

as arguments to the constructor of the Employee object created in
line 12.

• Line 15 outputs the Employee object’s data.

• When each Date object is created in lines 10–11, the Date
constructor defined in lines 11–25 of Fig. 9.18 displays a line of
output to show that the constructor was called (see the first two lines
of the sample output).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.11 Composition: Objects as Members of

Classes (cont.)

• [Note: Line 12 of Fig. 9.21 causes two additional Date
constructor calls that do not appear in the program’s output.
When each of the Employee’s Date member objects is
initialized in the Employee constructor’s member-initializer
list (Fig. 9.20, lines 14–15), the default copy constructor for
class Date is called. Since this constructor is defined implicitly
by the compiler, it does not contain any output statements to
demonstrate when it’s called.]

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.11 Composition: Objects as Members of

Classes (cont.)

What Happens When You Do Not Use the Member
Initializer List?

• If a member object is not initialized through a member
initializer, the member object’s default constructor will be
called implicitly.

• Values, if any, established by the default constructor can be
overridden by set functions.

• However, for complex initialization, this approach may require
significant additional work and time.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.12 friend Functions and friend

Classes

• A friend function of a class is a non-member function that has
the right to access the public and non-public class
members.

• Standalone functions, entire classes or member functions of
other classes may be declared to be friends of another class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.12 friend Functions and friend

Classes (cont.)

Declaring a friend

• To declare a function as a friend of a class, precede the function
prototype in the class definition with keyword friend.

• To declare all member functions of class ClassTwo as friends of class
ClassOne, place a declaration of the form

friend class ClassTwo;

• in the definition of class ClassOne.

• Friendship is granted, not taken—for class B to be a friend of class A,
class A must explicitly declare that class B is its friend.

• Friendship is not symmetric—if class A is a friend of class B, you cannot
infer that class B is a friend of class A.

• Friendship is not transitive—if class A is a friend of class B and class B is a
friend of class C, you cannot infer that class A is a friend of class C.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.12 friend Functions and friend

Classes (cont.)

Modifying a Class’s private Data with a Friend Function

• Figure 9.22 is a mechanical example in which we define friend function
setX to set the private data member x of class Count.

• We place the friend declaration first in the class definition, even before
public member functions are declared.

• Function setX is a stand-alone (global) function—it isn’t a member
function of class Count.

• For this reason, when setX is invoked for object counter, line 41 passes
counter as an argument to setX rather than using a handle (such as the
name of the object) to call the function, as in

counter.setX(8); // error: setX not a member function

• If you remove the friend declaration in line 9, you’ll receive error messages
indicating that function setX cannot modify class Count’s private
data member x.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

