Good Programming Practice 9.3

For clarity, list member initializers in the order that the
class’s data members are declared.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.11 Composition: Objects as Members of
Classes (cont.)

Date Class’s Default Copy Constructor

« As we mentioned in Section 9.9, the compiler provides each
class with a default copy constructorthat copies each data
member of the constructor’s argument object into the
corresponding member of the object being initialized.

» Chapter 10 discusses how you can define customized copy
constructors.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.11 Composition: Objects as Members of
Classes (cont.)

Testing Classes Date and Employee

* Figure 9.21 creates two Date objects (lines 10-11) and passes them
as arguments to the constructor of the Emp 1oyee object created in
line 12.

 Line 15 outputs the Emp loyee object’s data.

« When each Date object is created in lines 10-11, the Date
constructor defined in lines 11-25 of Fig. 9.18 displays a line of
output to show that the constructor was called (see the first two lines
of the sample output).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.11 Composition: Objects as Members of
Classes (cont.)

« [Note: Line 12 of Fig. 9.21 causes two additional Date
constructor calls that do not appear in the program’s output.
When each of the Employee’s Date member objects 1s
initialized in the Employee constructor’s member-initializer
list (Fig. 9.20, lines 14-15), the default copy constructor for
class Date is called. Since this constructor is defined implicitly
by the compiler, it does not contain any output statements to
demonstrate when it’s called.]

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 9.21: fig09_21.cpp

2 // Demonstrating composition--an object with member objects.
3 #include <iostream>

4 #include // Date class definition

5 #include // Employee class definition
6 using namespace std;

7

8 1int main(Q)

9 {

10 Date birth(7, ,)

11 Date hire(-, ,);

12 Employee manager(, , birth, hire);
13

14 cout << endl;

15 manager.print();

16 } // end main

Fig. 9.21 | Demonstrating composition—an object with member objects. (Part
| of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988

Employee object constructor: Bob Blue

Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949
Employee object destructor: Blue, Bob

Date object destructor for date 3/12/1988

Date object destructor for date 7/24/1949

Date object destructor for date 3/12/1988

Date object destructor for date 7/24/1949

There are actually five
constructor calls when an
EmpTloyee is constructed—two
calls to the string class’s
constructor (lines 12-13 of
Fig. 9.20), two calls to the Date
class’s default copy constructor
(lines 14-15 of Fig. 9.20) and

Fig. 9.21 | Demonstrating composition—an object with member objects. (Part

2 0of 2.)

©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

9.11 Composition: Objects as Members of
Classes (cont.)

What Happens When You Do Not Use the Member
Initializer List?

 |f a member object is not initialized through a member
initializer, the member object’s default constructorwill be
called implicitly.

« Values, If any, established by the default constructor can be
overridden by set functions.

« However, for complex initialization, this approach may require
significant additional work and time.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

2

Common Programming Error 9.5

A compilation error occurs if a member object is not
initialized with a member initializer and the member
object’s class does not provide a default constructor (i.e.,
the member object’s class defines one or more
constructors, but none is a default constructor).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Performance Tip 9.4

Initialize member objects explicitly through member
initializers. This eliminates the overhead of “doubly
initializing” member objects—once when the member
object’s default constructor is called and again when set
functions are called in the constructor body (or later) to
initialize the member object.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 9.11

If a data member is an object of another class, making
that member object pub11ic does not violate the
encapsulation and hiding of that member object’s
private members. But, it does violate the
encapsulation and hiding of the containing class’s
implementation, so member objects of class types should
still be private.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.12 friend Functions and friend
Classes

* A friend function of a class Is a non-member function that has
the right to access the pub 11 c andnon-pub11c class
members.

o Standalone functions, entire classes or member functions of
other classes may be declared to be fr/ends of another class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.12 friend Functions and friend
Classes (cont.)

Declaring a friend

« To declare a function as a fr1iend of a class, precede the function
prototype in the class definition with keyword friend.

« To declare all member functions of class Cl1assTwo as friends of class
ClassOne, place a declaration of the form
friend class ClassTwo;

* in the definition of class C1assOne.

 Friendship is granted, not taken—for class B to be a friend of class A,
class A mustexplicitly declare that class B is its friend.

« Friendship is not symmetric—if class A is a friend of class B, you cannot
Infer that class B is a friend of class A.

» Friendship is not transitive—if class A is a friend of class B and class B is a
friend of class C, you cannot infer that class A is a friend of class C.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.12 friend Functions and friend
Classes (cont.)

Modifying a Class’s private Data with a Friend Function

« Figure 9.22 is a mechanical example in which we define friend function
setX to set the private data member x of class Count.

« We place the Triend declaration 7irstin the class definition, even before
pub11c member functions are declared.

* Function setX is a stand-alone (global) function—it isn’t a member
function of class Count.

« For this reason, when setX is invoked for object counter, line 41 passes
counter as an argument to setX rather than using a handle (such as the
name of the object) to call the function, as in

counter.setX(8); // error: setxX not a member function

» If you remove the friend declaration in line 9, you’ll receive error messages
indicating that function setX cannot modify class Count’s private
data member X.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I //Fig. 9.22: fig09_22.cpp

2 // Friends can access private members of a class.
3 #include <iostream>

4 using namespace std;

5

6 // Count class definition

7 class Count

8 {

9 friend void setX(Count &, int); // friend declaration
10 public:

11 // constructor

12 Count()

13 : x() // initialize x to 0O

14 {

15 // empty body

16 } // end constructor Count

17

Fig. 9.22 | Friends can access private members of a class. (Part | of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

// output X

void print() const

{

cout << x << endl;

} // end function print
private:

int x; // data member
}; // end class Count

// function setX can modify private data of Count
// because setX is declared as a friend of Count (line 9)
void setX(Count &c, int val)
{

c.Xx = val; // allowed because setX is a friend of Count
} // end function setX

Fig. 9.22 | Friends can access private members of a class. (Part 2 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

